Mamba Selective State Space Sequence Model

Ratish Puduppully

IT University of Copenhagen

Partly based on tutorial by Sasha Rush (https://www.youtube.com/watch?v=dVH1dRoMPBc)

Goal: Large Language Models over Long Context

Detailed task description with example

to managing attention verigited positions, as effect no constense with Multi-Head Attention to described in section [2]

Goal: Large Language Models over Long Context

Long form generation

Dominant Model: Transformer LM

- Interactions between all elements
- Highly optimized training

Challenge: Inference Scales Poorly

Challenges:

- O(L) memory scaling at inference
- KV cache grows with length

Transformer Blocks

SLP - Jurafsky and Martin (3rd ed)

Query, Key, and Value Projections

We use matrices to project each input vector \mathbf{x}_i into representations of its role as query, key, or value:

- W^Q for queries
- \mathbf{W}^K for keys
- W^V for values

Mathematically:

$$\mathbf{q}_i = \mathbf{x}_i \mathbf{W}^Q, \quad \mathbf{k}_i = \mathbf{x}_i \mathbf{W}^K, \quad \mathbf{v}_i = \mathbf{x}_i \mathbf{W}^V.$$

Self-Attention Equations

$$q_i = x_i W^Q$$
, $k_j = x_j W^K$, $v_j = x_j W^V$
 $\operatorname{score}(x_i, x_j) = \frac{q_i \cdot k_j}{\sqrt{d_k}}$
 $\alpha_{i,j} = \operatorname{softmax}(\operatorname{score}(x_i, x_j)) \quad (\forall j \leq i)$
 $a_i = \sum_{j \leq i} \alpha_{i,j} v_j$

Calculating a3

• Earlier: FLOPs for $QK^T \propto L \times L$

- Earlier: FLOPs for $QK^T \propto L \times L$
- ullet With KV-cache $\propto L$

- Earlier: FLOPs for $QK^T \propto L \times L$
- With KV-cache $\propto L$
- Memory cost: $L \times \text{num_layers} \times 2 \times d$

Challenge: Inference Scales Poorly

Challenges:

- O(L) memory scaling at inference
- KV cache grows with length

Challenge: Inference Scales Poorly

	Available params	Active params	KV cache (256K context, 16bit)
Mistral	7.2B	7.2B	32GB
Mixtral 8x7B	46.7B	12.9B	32GB
LLaMA-3.1 8B	8B	8B	32GB
Mixtral 8x22B	141B	39B	56GB
Mistral-Large-2	123B	123B	88GB
LLaMA-3.1 70B	70B	70B	80GB
LLaMA-3.1 405B	405B	405B	252GB
Jamba-1.5-Mini	52B	12B	4GB
Jamba-1.5-Large	398B	94B	9GB

Table 1: Comparison of Jamba-1,5-Mini, Jamba-1,5-Large and recent open models in terms of total available parameters, active parameters, and KV cache memory on long contexts. Jamba-1,5-Mini and Jamba-1,5-Large provide substantial reductions in the KV cache memory requirements.

Jamba 1.5 (2024)

Challenge: Training Scales Poorly

 $O(\mathsf{L}^2)$ scaling in sequence length

Mamba (and friends)

Newer subquadratic architectures targeting large language models

- Mamba (Gu and Dao 2023)
- S5 (Smith et al. 2022)
- Based (Arora et al. 2024)
- Griffin (De et al. 2024)
- GLA (Yang et al. 2023)
- RetNet (Sun et al. 2023)

Property: Fixed-Size Memory

Constant memory at inference

Property: Linear Training Scaling

Linear compute in length

Why is this important now?

Mamba (Gu and Dao 2023)

Questions?

Outline

How do I understand the model?

How do I compute the model?

How do I design an effective version?

How do I scale it to its max state?

How do I understand the model?

General Form of Fixed-State Model

Prelim 1: Vanilla RNN

$$h_k = \sigma \left(\bar{A} h_{k-1} + \bar{B} x_k \right)$$
$$y_k = C h_k$$

Challenges

- Difficult to learn well
- Inefficient to train historically

Prelim 2: Linear Time Invariant (LTI)

$$h_k = \left(\bar{A}h_{k-1} + \bar{B}x_k\right)$$
$$y_k = Ch_k$$

Challenges

• Thought to be hard to learn

LSSL (Gu et al. 2021)

Context (S4): LTI is fast and relatively effective

S4 (Gu et al. 2021)

Roadblock: LTI is not great at LM

				Overall
	Model	Param (M)	TFLOPs	
	Attention	125	2.46	11.01 (2.40)
LTI	Long Conv	128	1.74	16.98 (2.83)
	H3	168	2.55	12.06 (2.49)
	Hyena	158	2.41	11.60 (2.45)
	RWKV	169	2.08	11.64 (2.45)
	Attention	360	6.23	9.44 (2.25)
LTI	Long Conv	360	4.08	13.13 (2.57)
	Н3	357	4.85	10.38 (2.34)
	Hyena	358	5.03	10.07 (2.31)
	RWKV	351	4.31	9.79 (2.28)

Based (Arora et al. 2024)

Failure Case 1: Filtering

$$h_k = \left(\bar{A}h_{k-1} + \bar{B}x_k\right)$$
$$y_k = Ch_k$$

LTI cannot ignore tokens! Example: Junk text on the web (copyright, ad copy)

Failure Case 2: Reset

$$h_k = \left(\overline{A} h_{k-1} + \overline{B} x_k \right)$$
$$y_k = C h_k$$

LTI cannot reset history! Example: Start of a new article, chapter in a long document

Historical Parallel: RNN → LSTM to Allow Gating

$$h_k = \sigma \left(\bar{A} h_{k-1} + \bar{B} x_k \right)$$
$$y_k = C h_k$$

RNN

Linear Time Varying (LTV) Model

$$h_{k} = (\bar{A}_{k} h_{k-1} + \bar{B}_{k} x_{k})$$
$$y_{k} = C_{k} h_{k}$$

Contribution: Let parameters change based on position:

Reset
$$\rightarrow$$
 $\bar{A_k} = 0$
Filter \rightarrow $\bar{B_k} = 0$

Generating Linear Time Varying (LTV)

$$h_{k} = \left(\bar{A}_{k} h_{k-1} + \bar{B}_{k} x_{k}\right)$$
$$y_{k} = C_{k} h_{k}$$

How to obtain $\bar{A_k}$, $\bar{B_k}$, C_k :

• Produce as a function of x

Results: LTV is a Promising Approach For LMs

✓ Fixes central issues with LTI✓ Maintains fixed-sized state

But

How do you run it efficiently?

Questions?

How do I compute the model?

$$h_k = \left(\bar{A}h_{k-1} + \bar{B}x_k\right)$$
$$y_k = Ch_k$$

$$h_1 = \bar{B}x_1 \quad y_1 = C\bar{B}x_1$$

$$h_k = (\bar{A}h_{k-1} + \bar{B}x_k)$$
$$y_k = Ch_k$$

$$h_1 = \bar{B}x_1$$
 $y_1 = C\bar{B}x_1$

$$h_2 = \bar{A}\bar{B}x_1 + \bar{B}x_2$$
 $y_2 = C\bar{A}\bar{B}x_1 + C\bar{B}x_2$

$$h_k = (\bar{A}h_{k-1} + \bar{B}x_k)$$
$$y_k = Ch_k$$

$$h_1 = \bar{B}x_1 \quad y_1 = C\bar{B}x_1$$

$$h_2 = \bar{A}\bar{B}x_1 + \bar{B}x_2 \quad y_2 = C\bar{A}\bar{B}x_1 + C\bar{B}x_2$$

$$\vdots$$

$$y_{k+1} = C\bar{A}^k\bar{B}x_1 + C\bar{A}^{k-1}\bar{B}x_2 + \dots + C\bar{A}\bar{B}x_k + C\bar{B}x_{k+1}$$

$$h_k = (\bar{A}h_{k-1} + \bar{B}x_k)$$
$$y_k = Ch_k$$

$$h_1 = \bar{B}x_1 \quad y_1 = C\bar{B}x_1$$

$$h_2 = \bar{A}\bar{B}x_1 + \bar{B}x_2 \quad y_2 = C\bar{A}\bar{B}x_1 + C\bar{B}x_2$$

$$y_{k+1} = C\bar{A}^k\bar{B}x_1 + C\bar{A}^{k-1}\bar{B}x_2 + \dots + C\bar{A}\bar{B}x_k + C\bar{B}x_{k+1}$$

$$ar{y} = ar{K} * x$$
 $ar{K} \in \mathbb{R}^{L+1} = (C\bar{B}, C\bar{A}\bar{B}, \dots, C\bar{A}^L\bar{B})$

- Convolution
- Computed in parallel

Example from https://chus.space/blog/2024/ssm_2_networks/

- Convolution
- Computed in parallel

Example from https://chus.space/blog/2024/ssm_2_networks/

- Convolution
- Computed in parallel

Example from https://chus.space/blog/2024/ssm_2_networks/

In LTV?

$$h_{k} = \left(\bar{A}_{k} h_{k-1} + \bar{B}_{k} x_{k}\right)$$
$$y_{k} = C_{k} h_{k}$$

- No convolutional form (time-varying parameters).
- Recurrent form required.
- Sequential bottleneck?

In LTV?

$$h_{k} = \left(\bar{A}_{k} h_{k-1} + \bar{B}_{k} x_{k}\right)$$
$$y_{k} = C_{k} h_{k}$$

- No convolutional form (time-varying parameters).
- Recurrent form required.
- Sequential bottleneck?
- Solution: Parallel scan.

Prefix Sums and Their Applications

Guy E. Blelloch

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890

See also Martin et al. 2017, Smith et al. 2022 (S5)

• Parallelizes a sequential operation to achieve faster computation.

- Parallelizes a sequential operation to achieve faster computation.
- Reduces complexity from O(L) to $O(\log L)$.

- Parallelizes a sequential operation to achieve faster computation.
- Reduces complexity from O(L) to $O(\log L)$.
- Requires an associative operator (e.g., matrix multiplication, matrix addition).
 - Example: Matrix Addition (A + B) + C = A + (B + C)

"Hello world" of Parallel Scans: Cumulative Sum

$$y_k = \sum_{i=1}^k x_i$$

$$y_k = \sum_{i=1}^k x_i$$

$$y_k = \sum_{i=1}^k x_i$$

$$\begin{bmatrix} 3 & 4 & 11 & 11 & 15 & 16 & 22 & 25 \\ y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \end{bmatrix}$$

$$h_k = h_{k-1} + x_k$$
$$y_k = h_k$$

$$\begin{bmatrix}
3 & 4 & 11 & 11 & 15 & 16 & 22 & 25 \\
y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8
\end{bmatrix}$$

$[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3] \ \longrightarrow \ [3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25]$

Down Sweep

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$\begin{aligned} & prescan[L[v]] = prescan[v] \\ & prescan[R[v]] = sum[L[v]] + prescan[v] \end{aligned}$$

$[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3] \ \longrightarrow \ [3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25]$

Down Sweep

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$\begin{aligned} & prescan[L[v]] = prescan[v] \\ & prescan[R[v]] = sum[L[v]] + prescan[v] \end{aligned}$$

$[3 \ 1 \ 7 \ 0 \ 4 \ 1 \ 6 \ 3] \ \longrightarrow \ [3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25]$

Down Sweep

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$\begin{aligned} & prescan[L[v]] = prescan[v] \\ & prescan[R[v]] = sum[L[v]] + prescan[v] \end{aligned}$$

Down Sweep

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$\begin{aligned} & prescan[L[v]] = prescan[v] \\ & prescan[R[v]] = sum[L[v]] + prescan[v] \end{aligned}$$

Down Sweep

 $\begin{aligned} & \text{prescan}[L[v]] = \text{prescan}[v] \\ & \text{prescan}[R[v]] = \text{sum}[L[v]] + \text{prescan}[v] \end{aligned}$

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$\begin{aligned} & prescan[L[v]] = prescan[v] \\ & prescan[R[v]] = sum[L[v]] + prescan[v] \end{aligned}$$

$$sum[v] = sum[L[v]] + sum[R[v]]$$

$$\begin{aligned} & prescan[L[v]] = prescan[v] \\ & prescan[R[v]] = sum[L[v]] + prescan[v] \end{aligned}$$

$$sum[v] = sum[L[v]] + sum[R[v]]$$

 $\begin{aligned} & \mathsf{prescan}[\mathsf{L}[\mathsf{v}]] = \mathsf{prescan}[\mathsf{v}] \\ & \mathsf{prescan}[\mathsf{R}[\mathsf{v}]] = \mathsf{sum}[\mathsf{L}[\mathsf{v}]] + \mathsf{prescan}[\mathsf{v}] \end{aligned}$

$$h_k = \bar{A}_k h_{k-1} + \bar{B}_k x_k$$
$$y_k = C_k h_k$$

Linear recurrence?

New primitives

$$x'_k := (\bar{A}_k, \bar{B}_k x_k)$$

$$(a_1, b_1) \oplus (a_2, b_2) := (a_2a_1, a_2b_1 + b_2)$$

(0,0)

Results: Fast algorithms for LTV

```
✓ Can run LTV in parallel
✓ Needs A, B, C to run
But ...
How do you produce A, B, C that work in practice?
```

Questions?

How do I design an effective

version?

Reminder: LTV

$$h_k = \bar{A}_k h_{k-1} + \bar{B}_k x_k$$
$$y_k = C_k h_k$$

Continuous-Time State-Space Model

$$h'(t) = Ah(t) + B(t)x(t)$$
$$y(t) = C(t)h(t)$$

Imagine x, y was in continuous time, how do we model its dynamics?

A New Approach to Linear Filtering and Prediction Problems (Kalman 1960) Mamba (Gu & Dao 2023)

Goal: Sequence Model Maps Sequence to Sequence

Map 1D sequence to 1D sequence

SSMs: Map 1D function to 1D function

Discretization at Selected Ranges

Continuous:

$$h'(t) = Ah(t) + B(t)x(t)$$
$$y(t) = C(t)h(t)$$

Discrete:

$$h_k = \bar{A}_k h_{k-1} + \bar{B}_k x_k$$
$$y_k = C_k h_k$$

 $\Delta_1 \dots \Delta_L$ predicted from x

$$h'(t) = Ah(t) + B(t)x(t)$$
$$y(t) = C(t)h(t)$$

$$h(t + \Delta) \approx h(t) + \Delta h'(t)$$

$$h'(t) = Ah(t) + B(t)x(t)$$
$$y(t) = C(t)h(t)$$

$$h(t + \Delta) \approx h(t) + \Delta h'(t)$$

= $h(t) + \Delta (Ah(t) + Bx(t))$

$$h'(t) = Ah(t) + B(t)x(t)$$
$$y(t) = C(t)h(t)$$

$$h(t + \Delta) \approx h(t) + \Delta h'(t)$$

$$= h(t) + \Delta (Ah(t) + Bx(t))$$

$$= (I + \Delta A) h(t) + \Delta Bx(t)$$

$$h'(t) = Ah(t) + B(t)x(t)$$
$$y(t) = C(t)h(t)$$

$$h(t + \Delta) \approx h(t) + \Delta h'(t)$$

$$= h(t) + \Delta (Ah(t) + Bx(t))$$

$$= (I + \Delta A) h(t) + \Delta Bx(t)$$

$$= \bar{A}h(t) + \bar{B}x(t)$$

Discretization Formula: Zero Order Hold

$$egin{aligned} ar{A}_k &= \exp(\Delta_k A) \ ar{B}_k &= \left(ar{A}_k - 1\right) \left(B/A\right) \end{aligned}$$

- A is learned weight
- \bar{B}_k and Δ_k are input dependent

• Predict continuous values A, B, and intervals Δ for inputs x_1 to x_L .

- Predict continuous values A, B, and intervals Δ for inputs x_1 to x_L .
- Discretize A and B to \bar{A} and \bar{B} .

- Predict continuous values A, B, and intervals Δ for inputs x_1 to x_L .
- Discretize A and B to \bar{A} and \bar{B} .
- Run parallel scan in discrete time for output values.

- Predict continuous values A, B, and intervals Δ for inputs x_1 to x_L .
- Discretize A and B to \bar{A} and \bar{B} .
- Run parallel scan in discrete time for output values.

Output values approximate the continuous model at sample points of x.

Recall Failure Case 1: Filtering

$$h_k = \left(\bar{A}h_{k-1} + \bar{B}x_k\right)$$
$$y_k = Ch_k$$

LTI cannot ignore tokens! Example: Junk text on the web (copyright, ad copy)

Recall Failure Case 2: Reset

$$h_k = \left(\overline{\underline{A}} h_{k-1} + \overline{B} x_k \right)$$
$$y_k = C h_k$$

LTI cannot reset history! Example: Start of a new article, chapter in a long document

Fixed Case 1: Filtering

$$\Delta_k o 0$$
 $ar{A}_k = \exp(\Delta_k A) o 1$ $ar{B}_k = (ar{A}_k - 1) (B/A) o 0$

$$h_k = \bar{A_k} h_{k-1} + \bar{B_k} x_k$$

Delta can filter tokens

Fixed Case 2: Reset

$$\Delta_k \to \infty$$

$$ar{A}_k = \exp(\Delta_k A) o 0$$

$$h_k = \bar{A_k} h_{k-1} + \bar{B_k} x_k$$

Delta can reset state

Results: Parameterization for LTV

- √ Fixes central issues with LTI
- √ Maintains fixed-sized state
- √Able to learn A, B, C

But

This seems inherently slower than LTI?

Questions?

How do I scale it to its max

state?

Recall Dimensions

Memory bound vs Compute bound

Memory bound vs Compute bound

Memory-bandwidth Cost

Operator Fusion - Motivation

Operator Fusion

$$x1 = x.cos().cos().sin()$$

"Naive" Computation

Operator Fusion

Operator Fusion

Recomputation

- Fusion requires recomputation for backpropagation.
- Reduces memory costs and speeds up by avoiding HBM reads of h, Ā, B̄.

Mamba Architecture

Conclusion

Does it work?

Mamba (Gu and Dao 2023)

What next?

- Lots of interest in different applications.
- Images, video, graphs, interpretability

Questions?

Thank You!