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Goal: Large Language Models over Long Context

Detailed task description with example

The "Attention is All You Need" paper, published by Vaswani et al. 
in 2017, introduced the Transformer model, which revolutionized 
the field of NLP by relying entirely on self-attention mechanisms, 

removing the need for recurrent or convolutional architectures. The 
Transformer consists of an encoder-decoder structure where both 

the encoder and decoder are made up of layers that utilize 
self-attention to capture dependencies between words regardless 
of their distance in a sequence. This architecture allowed for more 
efficient parallelization, making it faster to train on large datasets. 

The key innovation was the self-attention mechanism, which 
assigns different weights to each word in a sequence based on its 
relevance to other words, allowing the model to capture complex 
linguistic relationships. The Transformer significantly improved 

performance across various tasks such as machine translation and 
sequence-to-sequence problems, laying the foundation for models 

like BERT and GPT.

Summarize
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Goal: Large Language Models over Long Context

Long form generation
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Dominant Model: Transformer LM

• Interactions between all

elements

• Highly optimized training
input

attention + MLP

output

Length(L)
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Challenge: Inference Scales Poorly

Challenges:

• O(L) memory scaling at inference

• KV cache grows with length
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Autoregressive Generation in GPT-2

Example from https://jalammar.github.io/illustrated-gpt2
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Autoregressive Generation in GPT-2

Example from https://jalammar.github.io/illustrated-gpt2
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Transformer Blocks

SLP - Jurafsky and Martin (3rd ed)
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Query, Key, and Value Projections

We use matrices to project each input vector xi into representations of its

role as query, key, or value:

• WQ for queries

• WK for keys

• WV for values

Mathematically:

qi = xiW
Q , ki = xiW

K , vi = xiW
V .
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Self-Attention Equations

qi = xi W
Q , kj = xj W

K , vj = xj W
V

score(xi , xj) =
qi · kj√

dk

αi,j = softmax
(
score(xi , xj)

)
(∀ j ≤ i)

ai =
∑
j≤i

αi,j vj
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Calculating a3
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Dot-product Attention in Decoder

Example from https://medium.com/@joaolages/kv-caching-explained-276520203249
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Dot-product Attention in Decoder with KV-cache

Example from https://medium.com/@joaolages/kv-caching-explained-276520203249
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Dot-product Attention in Decoder with KV-cache
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Dot-product Attention in Decoder with KV-cache

• Earlier: FLOPs for QKT ∝ L× L

• With KV-cache ∝ L

• Memory cost: L× num layers× 2× d
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Challenge: Inference Scales Poorly

Challenges:

• O(L) memory scaling at inference

• KV cache grows with length
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Challenge: Inference Scales Poorly

Jamba 1.5 (2024)
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Challenge: Training Scales Poorly

O(L2) scaling in sequence

length
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Mamba (and friends)

Newer subquadratic architectures targeting large language models

• Mamba (Gu and Dao 2023)

• S5 (Smith et al. 2022)

• Based (Arora et al. 2024)

• Griffin (De et al. 2024)

• GLA (Yang et al. 2023)

• RetNet (Sun et al. 2023)
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Property: Fixed-Size Memory

Constant memory at inference
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Property: Linear Training Scaling

Linear compute in length
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Why is this important now?

Mamba (Gu and Dao 2023)
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Questions?
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Outline

How do I understand the model?

How do I compute the model?

How do I design an effective version?

How do I scale it to its max state?
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How do I understand the model?



General Form of Fixed-State Model
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Prelim 1: Vanilla RNN

hk = σ
(
Āhk−1 + B̄xk

)
yk = Chk

Challenges

• Difficult to learn well

• Inefficient to train historically
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Prelim 2: Linear Time Invariant (LTI)

hk =
(
Āhk−1 + B̄xk

)
yk = Chk

Challenges

• Thought to be hard to learn

LSSL (Gu et al. 2021)
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Context (S4): LTI is fast and relatively effective

S4 (Gu et al. 2021)
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Roadblock: LTI is not great at LM

Based (Arora et al. 2024)
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Failure Case 1: Filtering

LTI cannot ignore tokens!

Example: Junk text on the web

(copyright, ad copy)
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Failure Case 2: Reset

LTI cannot reset history!

Example: Start of a new article,

chapter in a long document
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Historical Parallel: RNN → LSTM to Allow Gating

hk = σ
(
Āhk−1 + B̄xk

)
yk = Chk

RNN
LSTM
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Linear Time Varying (LTV) Model

hk =
(
Ākhk−1 + B̄kxk

)
yk = Ckhk

Contribution: Let parameters change

based on position:

Reset → Āk = 0

Filter → B̄k = 0
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Generating Linear Time Varying (LTV)

hk =
(
Ākhk−1 + B̄kxk

)
yk = Ckhk

How to obtain Āk , B̄k ,Ck :

• Produce as a function of x
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Results: LTV is a Promising Approach For LMs

✓Fixes central issues with LTI

✓Maintains fixed-sized state

But ....

How do you run it efficiently?
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Questions?
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How do I compute the model?



Background: LTI

hk =
(
Āhk−1 + B̄xk

)
yk = Chk

h1 = B̄x1 y1 = CB̄x1

h2 = ĀB̄x1 + B̄x2 y2 = CĀB̄x1 + CB̄x2

...

yk+1 = CĀk B̄x1 + CĀk−1B̄x2 + · · ·+ CĀB̄xk + CB̄xk+1

ȳ = K̄ ∗ x

K̄ ∈ RL+1 = (CB̄,CĀB̄, . . . ,CĀLB̄)
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ȳ = K̄ ∗ x

K̄ ∈ RL+1 = (CB̄,CĀB̄, . . . ,CĀLB̄)
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...
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Background: LTI

• Convolution

• Computed in parallel

Example from https://chus.space/blog/2024/ssm_2_networks/
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In LTV?

hk =
(
Ākhk−1 + B̄kxk

)
yk = Ckhk

• No convolutional form (time-varying parameters).

• Recurrent form required.

• Sequential bottleneck?

• Solution: Parallel scan.
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Associative Scan

See also Martin et al. 2017, Smith et al. 2022 (S5)
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Associative Scan

• Parallelizes a sequential operation to achieve faster computation.

• Reduces complexity from O(L) to O(log L).

• Requires an associative operator (e.g., matrix multiplication, matrix

addition).

• Example: Matrix Addition (A+ B) + C = A+ (B + C)
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“Hello world” of Parallel Scans: Cumulative Sum

yk =
∑k

i=1 xi
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[
3 1 7 0 4 1 6 3

x1 x2 x3 x4 x5 x6 x7 x8

]

yk =
k∑

i=1

xi
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[
3 1 7 0 4 1 6 3

x1 x2 x3 x4 x5 x6 x7 x8

]

yk =
k∑

i=1

xi

[
3 4 11 11 15 16 22 25

y1 y2 y3 y4 y5 y6 y7 y8

]
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[
3 1 7 0 4 1 6 3

x1 x2 x3 x4 x5 x6 x7 x8

]

hk = hk−1 + xk

yk = hk

[
3 4 11 11 15 16 22 25

y1 y2 y3 y4 y5 y6 y7 y8

]
42



[3 1 7 0 4 1 6 3] −→ [3 4 11 11 15 16 22 25]

Up Sweep

3 1 7 0 4 1 6 3

sum[v] = sum[L[v]] + sum[R[v]]

Down Sweep

prescan[L[v]] = prescan[v]

prescan[R[v]] = sum[L[v]] + prescan[v]
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9
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sum[v] = sum[L[v]] + sum[R[v]]

Down Sweep

0
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prescan[R[v]] = sum[L[v]] + prescan[v]
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0
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0 4
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[3 1 7 0 4 1 6 3] −→ [3 4 11 11 15 16 22 25]

Up Sweep

25

11
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6 3

sum[v] = sum[L[v]] + sum[R[v]]

Down Sweep

0

0

0

0 3

4

4 11
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11 15

16

16 22

prescan[L[v]] = prescan[v]

prescan[R[v]] = sum[L[v]] + prescan[v]
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hk = Ākhk−1 + B̄kxk

yk = Ckhk

Linear recurrence?
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New primitives

x ′k :=
(
Āk , B̄kxk

)

(a1, b1)⊕ (a2, b2) := (a2a1, a2b1 + b2)

52



x ′1 x ′2 x ′3 x ′4
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x ′1 ⊕ x ′2

x ′1 x ′2

x ′3 ⊕ x ′4

x ′3 x ′4
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x ′1 ⊕ x ′2 ⊕ x ′3 ⊕ x ′4

x ′1 ⊕ x ′2

x ′1 x ′2

x ′3 ⊕ x ′4

x ′3 x ′4

55



(
Ā1, B̄1x1

) (
Ā2, B̄2x2

) (
Ā3, B̄3x3

) (
Ā4, B̄4x4

)
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(
Ā2Ā1, Ā2B̄1x1 + B̄2x2

)

(
Ā1, B̄1x1

) (
Ā2, B̄2x2

)

(
Ā4Ā3, Ā4B̄3x3 + B̄4x4

)

(
Ā3, B̄3x3

) (
Ā4, B̄4x4

)

57



(
Ā4Ā3Ā2Ā1, Ā4Ā3Ā2B̄1x1 + Ā4Ā3B̄2x2 + Ā4B̄3x3 + B̄4x4

)

(
Ā2Ā1, Ā2B̄1x1 + B̄2x2

)

(
Ā1, B̄1x1

) (
Ā2, B̄2x2

)

(
Ā4Ā3, Ā4B̄3x3 + B̄4x4

)

(
Ā3, B̄3x3

) (
Ā4, B̄4x4

)
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(0, 0)
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(0, 0)

(0, 0)
(Ā2Ā1, Ā2B̄1x1+

B̄2x2)
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(0, 0)

(0, 0)

(0, 0) (Ā1, B̄1x1)

(Ā2Ā1, Ā2B̄1x1+

B̄2x2)

(Ā2Ā1, Ā2B̄1x1+

B̄2x2)

(Ā3Ā2Ā1, Ā3Ā2B̄1x1+

Ā3B̄2x2+B̄3x3)
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Results: Fast algorithms for LTV

✓Can run LTV in parallel

✓Needs A, B, C to run

But ...

How do you produce A, B, C that work in practice?

62



Questions?
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How do I design an effective

version?



Reminder: LTV

hk = Ākhk−1 + B̄kxk

yk = Ckhk
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Continuous-Time State-Space Model

h′(t) = Ah(t) + B(t)x(t)

y(t) = C (t)h(t)

Imagine x , y was in continuous time,

how do we model its dynamics?

A New Approach to Linear Filtering and Prediction

Problems (Kalman 1960)

Mamba (Gu & Dao 2023)
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Goal: Sequence Model Maps Sequence to Sequence

f(h;𝜽)

Map 1D sequence to 1D sequence
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SSMs: Map 1D function to 1D function

f(h;𝜽)
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Discretization at Selected Ranges

Continuous:

h′(t) = Ah(t) + B(t)x(t)

y(t) = C (t)h(t)

Discrete:

hk = Ākhk−1 + B̄kxk

yk = Ckhk

∆1 . . .∆L predicted from x
68



Discretization

h′(t) = Ah(t) + B(t)x(t)

y(t) = C (t)h(t)

Euler Discretization

h(t +∆) ≈ h(t) + ∆h′(t)
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Discretization

h′(t) = Ah(t) + B(t)x(t)

y(t) = C (t)h(t)

Euler Discretization

h(t +∆) ≈ h(t) + ∆h′(t)

= h(t) + ∆ (Ah(t) + Bx(t))

= (I +∆A) h(t) + ∆Bx(t)

= Āh(t) + B̄x(t)

69



Discretization Formula: Zero Order Hold

Āk = exp(∆kA)

B̄k =
(
Āk − 1

)
(B/A)

• A is learned weight

• B̄k and ∆k are input dependent
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Complete Process

• Predict continuous values A, B, and intervals ∆ for inputs x1 to xL.

• Discretize A and B to Ā and B̄.

• Run parallel scan in discrete time for output values.

Output values approximate the continuous model at sample points of x .
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• Run parallel scan in discrete time for output values.

Output values approximate the continuous model at sample points of x .

71



Complete Process

• Predict continuous values A, B, and intervals ∆ for inputs x1 to xL.

• Discretize A and B to Ā and B̄.
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Recall Failure Case 1: Filtering

LTI cannot ignore tokens!

Example: Junk text on the web

(copyright, ad copy)
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Recall Failure Case 2: Reset

LTI cannot reset history!

Example: Start of a new article,

chapter in a long document
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Fixed Case 1: Filtering

∆k → 0

Āk = exp(∆kA) → 1

B̄k =
(
Āk − 1

)
(B/A) → 0

hk = Ākhk−1 + B̄kxk

Delta can filter tokens
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Fixed Case 2: Reset

∆k → ∞

Āk = exp(∆kA) → 0

hk = Ākhk−1 + B̄kxk

Delta can reset state
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Results: Parameterization for LTV

✓Fixes central issues with LTI

✓Maintains fixed-sized state

✓Able to learn A, B, C

But ....

This seems inherently slower than

LTI?
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Questions?
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How do I scale it to its max

state?



Recall Dimensions
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81
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Memory bound vs Compute bound

Making Deep Learning Go Brrrr From First Principles (Horace He 2022)
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Memory bound vs Compute bound

Making Deep Learning Go Brrrr From First Principles (Horace He 2022)
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Memory-bandwidth Cost

Making Deep Learning Go Brrrr From First Principles (Horace He 2022)
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Operator Fusion - Motivation

x1 = x.cos()

x2 = x1.cos()

x3 = x2.sin()

Making Deep Learning Go Brrrr From First Principles (Horace He 2022)
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Operator Fusion

x1 = x.cos().cos().sin()

Making Deep Learning Go Brrrr From First Principles (Horace He 2022)
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“Naive” Computation
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Operator Fusion
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Operator Fusion
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Recomputation

• Fusion requires recomputation for

backpropagation.

• Reduces memory costs and speeds

up by avoiding HBM reads of

h, Ā, B̄.
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Mamba Architecture

91



Conclusion



Does it work?

Mamba (Gu and Dao 2023)

92



What next?

• Lots of interest in different

applications.

• Images, video, graphs,

interpretability
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Questions?

94



Thank You!
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